On Approximate Nearest Neighbors under l∞ Norm
نویسندگان
چکیده
منابع مشابه
Randomized approximate nearest neighbors algorithm.
We present a randomized algorithm for the approximate nearest neighbor problem in d-dimensional Euclidean space. Given N points {x(j)} in R(d), the algorithm attempts to find k nearest neighbors for each of x(j), where k is a user-specified integer parameter. The algorithm is iterative, and its running time requirements are proportional to T·N·(d·(log d) + k·(d + log k)·(log N)) + N·k(2)·(d + l...
متن کاملApproximate Nearest Neighbors Algorithm - a short version
dimensional Euclidean space. Given N points {xj} in Rd, the algorithm attempts to find k nearest neighbors for each of xj , where k is a user-specified integer parameter. The algorithm is iterative, and its CPU time requirements are proportional to T ·N ·(d ·(log d)+ k · (d + log k) · (log N)) + N · k2 · (d + log k), with T the number of iterations performed. The memory requirements of the proc...
متن کاملA Randomized Approximate Nearest Neighbors Algorithm
dimensional Euclidean space. Given N points {xj} in Rd, the algorithm attempts to find k nearest neighbors for each of xj , where k is a user-specified integer parameter. The algorithm is iterative, and its CPU time requirements are proportional to T ·N ·(d ·(log d)+ k · (log k) · (log N)) + N · k2 · (d + log k), with T the number of iterations performed. The memory requirements of the procedur...
متن کاملApproximate K Nearest Neighbors in High Dimensions
Given a set P of N points in a ddimensional space, along with a query point q, it is often desirable to find k points of P that are with high probability close to q. This is the Approximate k-NearestNeighbors problem. We present two algorithms for AkNN. Both require O(Nd) preprocessing time. The first algorithm has a query time cost that is O(d+logN), while the second has a query time cost that...
متن کاملNonlinear Dimensionality Reduction using Approximate Nearest Neighbors
Nonlinear dimensionality reduction methods often rely on the nearest-neighbors graph to extract low-dimensional embeddings that reliably capture the underlying structure of high-dimensional data. Research however has shown that computing nearest neighbors of a point from a highdimensional data set generally requires time proportional to the size of the data set itself, rendering the computation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer and System Sciences
سال: 2001
ISSN: 0022-0000
DOI: 10.1006/jcss.2001.1781